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● Flow solver based on the lattice-Boltzmann 
method.

● Optimised for sparse, patient-specific 
geometries1.

● Supports a range of collision kernels and 
boundary conditions2.

● Easy compilation, execution, analysis using 
FabHemeLB3.

[4]

[1] Groen et al., JoCS 4(5), 2013.
[2] Nash et al., Phys Rev E  89, 023033, 2014.
[3] Groen et al., arXiv:1512.02194
[4] Bernabeu et al., J. R. Soc. Interface, 11(99), 2014.

What is HemeLB?
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Many scales

1D solver (PyNS)

Epithelial (CHASTE)

3D solver (HemeLB)

Red Blood Cells
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Aneurysm treatment with stents 
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• Prediction of stresses arising 
from treatment of aneurysms 
with flow diverting stents
– Patient specific models and 

inflow conditions
– Exploring the effects of 

different stent designs



● Give clinicians extra info using data which is 
already collected
○ Non-invasive
○ How will introduction of stent affect flow 

and stresses in the system?
○ Wall shear stress, oscillatory shear stress, 

etc.

Why simulation?



Flow, stresses, velocity comparisons, etc.
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Magnetic Drug Targeting
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• Super Paramagnetic Iron Oxide particles
• SPIONs can be coated with polymers to produce 

various colloidal interactions, or loaded with drugs
• Magnetic field can guide SPIONs to target site e.g. 

tumour
• Rapidly varying magnetic field causes induction 

heating, applying heat to the tumour or causing 
release of drugs

• We study the distribution and interactions of these 
colloids using CFD



Magnetic Drug Targeting

Patronis et al., Front. Physiol. 9:331 (2018)



Step 1: Compile HemeLB



Get and build HemeLB
● Get it from the shared folder on Marenostrum:

cp -r /gpfs/projects/nct00/nct00004/hemelb-pure_public/  ~/

● Unload/load necessary modules:
module unload intel/2017.4
module unload impi/2017.4
module unload mkl/2017.4
module load gcc/7.1.0
module load openmpi/1.10.7

● Compilation:
mkdir ~/hemelb-pure_public/src/build/
cd ~/hemelb-pure_public/src/build/
cmake ..
make

● Should take a couple of minutes to compile

( The above instructions are available in hemelb-pure_public/README.md )



Step 2: Create input files



● Rotational Angiography or x-ray CT is used to take 
x-ray images at various angles around the patient's 
head
○ Can reconstruct the 3D volume revealed by the 

contrast agent.
○ Typically, image quality is better from the CT scan 

due to the faster acquisition time.
● Segmentation and post-processing (filtering and 

smoothing) can be carried out with software such as 
VMTKLab (http://vmtklab.orobix.com).

Segmentation of Medical Images



Predicting Velocity Data

● We need to specify the time-velocity 
profile at the inlets to the area of 
interest.

● Non-invasive measurement 
techniques include Transcranial 
Doppler (TCD)

● Due to the skull, technique can only 
be used at very limited number of 
locations around head.

● Alternatively, couple 3D CFD solver 
to a 1-dimensional solver

● PyNS (A 1D Navier-Stokes solver 
running with Python).

● Can aid in predicting velocity profiles 
for areas of the brain which are not 
accessible to TCD.



Input files for simple case
● Go to the sample input file directory:

cd ~/hemelb-pure_public/cases/bifurcation/

● Let’s look through the input files
● We’ll use a simple bifurcation geometry to start with

bifurcation.stl



Velocity input files

● A peak velocity time-profile for use at the (one) inlet

.

.

.
velocity_bifurcation.txt



Velocity input files

● What is velocity_bifurcation.txt.weights.txt?
○ Sets the velocity distribution across the inlet
○ e.g. parabolic profile

.

.

.
velocity_bifurcation.txt.weights.txt

inlet



input.xml
● A single file that tells HemeLB where to find any data it needs
● Normally a graphical user interface, or automated pipeline would generate 

most of this
● First we have parameters related to the lattice-Boltzmann algorithm:



input.xml
● Information about the location and type of inlets/outlets to the geometry



input.xml
● The position of the paramagnetic particles

● Magnet location, strength, wall lubrication interaction, etc.

● And so on...



Step 3: Run HemeLB



Running HemeLB
#!/bin/bash
#SBATCH --ntasks=8
#SBATCH -o %J.out
#SBATCH -e %J.err
#SBATCH -t 010:00
#SBATCH --reservation=VPHSUMMER18

rm -rf results
srun ~/hemelb-pure_public/src/build/hemelb -i input.xml

Submit the above SLURM job script using:
sbatch run_bifurc_reservation.sh

Check progress with:
watch squeue



Check reports.txt
● A new directory should have appeared, called results/
● If you’re waiting, have a look at report.txt



Step 4: Analyse results



Extract data from results/

● We want to visualise what has been output to the results/ directory

● The following command will extract the information needed for 
visualization:

./hemeXtract -X results/ColloidOutput.xdr -o colloids.csv

● Copy this file to your laptop (or wherever you have paraview installed)
● Copy bifurcation.stl to your laptop too

● Once you have both files, on your laptop open paraview

paraview



Open bifurcation.stl

Use slider to reduce opacity

Click apply



Open colloids.csv

Replace field delimiter with a space

Uncheck ‘Have Headers’



Filters->Alphabetical->Table to Points

Set Coloring to Field 0 (time step)

Set X Column to Field 3
Set Y Column to Field 4
Set Z Column to Field 5



If there’s still time at the end...

Look in ~/hemelb-pure_public/cases/CoW100
Follow instructions in the README file there



What algorithm is HemeLB running?



Lattice Boltzmann Method

● A discrete way of solving Boltzmann equation
○ Can be shown to satisfy incompressible 

Navier-Stokes equation
○ Advantages for multiphase, and 

non-Newtonian flows.
● Why use LB?

○ Divide up simulation domain into a regular 
grid of lattice sites
■ Fluid sites
■ Wall sites

○ 2 steps: Streaming and Collision
○ Only nearest-neighbour interactions 

(typically)
■ Extremely scalable
■ Works well with sparse geometries



A note on compilation flags



MDT Algorithm

Patronis et al., Front. Physiol. 9:331 (2018)



Example Code Fragment



What’s the point?



Circle of Willis

Patronis et al., Front. Physiol. 9:331 (2018)



Tracer particle flow in CoW

https://docs.google.com/file/d/1kF2Gx-oUfSuj1nCe86u0Y3E-Hqd7XyID/preview


Velocity input files

Patronis et al., Front. Physiol. 9:331 (2018)

● Inputs generated from 1D 
model



Video of particles in CoW

https://docs.google.com/file/d/1gN8Y1A6e-gY8LVhB-NfnmpWaiPEghOW_/preview


Particles at target site

Patronis et al., Front. Physiol. 9:331 (2018)



Particles at target site

● Superparamagnetic Iron Oxide Nanoparticles 
with drug coating

● Aim: Predict required dose given patient 
specific geometry and physiological state, 
magnet configuration etc.

Patronis et al., Front. Physiol. 9:331 (2018)

● 80 mmHg, 4.8 l min−1, 68 bpm
● 112 mmHg, 10.7 l min−1, 113 bpm
● 116 mmHg, 11.9 l min−1, 120 bpm
● 122 mmHg, 13.2 l min−1, 134 bpm



Load Balancing

Patronis et al., Front. Physiol. 9:331 (2018)



Massive supercomputers



What about the Exascale?

● US Department of Energy, expects 
Aurora exascale machine by 2021
○ But won’t give details

● Mixtures of GPU and CPU nodes
● “real challenge here is to keep the 

power draw to something in the 
neighborhood of 400 to 600 watts per 
node”

https://www.top500.org

● “Soon”



Scaling up

Blue Waters, ~5 billion fluid sites

● Speedup = t_1/t_N
● t_1 = time on one core
● t_N = time on N cores

● Ideal would be N times 
speedup on N cores



Load balance and topology issues

Scaling relative to 1 SuperMUC island (8192 cores) for a 
20um circle of Willis geometry (around 360 million fluid 
sites)

ARCHER

SuperMUC

● SuperMUC island topology 
is more challenging
– Requires tuning of load 

decomposition 
● Challenge due to high sparsity 

of vascular systems (CoW has 
<< 1% volume fluid sites)



Full Human Arterial Tree

46

~7 cm

170 
cm

~mm

● Typically use CT-scan data 
(Angiogram) 

○ Segmentation of files ~9.8 GB
○ Full human arterial tree obtained 

through MRI scan
● Voxelization and geometry building 

takes ~10+ hours on 100s-1000s  of 
cores for the largest cases

○ Requiring ~300G memory for 
voxelization

○ Outputting ~5 Terabytes fluid site 
data (uncompressed)

○ Final geometry file is ~10GB
● Lattice-Boltzmann  simulation 

(HemeLB)
○ Large cases require 30k cores+ for 

20 hours+
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Still time…?

Look in ~/hemelb-pure_public/cases/CoW100
Follow instructions in the README file there


