
Application:
Simple magnetic drug targeting 

simulations with HemeLB

This project has received funding from the European Union’s 
Horizon 2020 research and innovation programme.

Robin Richardson
UCL



● Flow solver based on the lattice-Boltzmann 
method.

● Optimised for sparse, patient-specific 
geometries1.

● Supports a range of collision kernels and 
boundary conditions2.

● Easy compilation, execution, analysis using 
FabHemeLB3.

[4]

[1] Groen et al., JoCS 4(5), 2013.
[2] Nash et al., Phys Rev E  89, 023033, 2014.
[3] Groen et al., arXiv:1512.02194
[4] Bernabeu et al., J. R. Soc. Interface, 11(99), 2014.

What is HemeLB?

2



Many scales

1D solver (PyNS)

Epithelial (CHASTE)

3D solver (HemeLB)

Red Blood Cells

Length

Ti
m

e



Aneurysm treatment with stents 

4

• Prediction of stresses arising 
from treatment of aneurysms 
with flow diverting stents
– Patient specific models and 

inflow conditions
– Exploring the effects of 

different stent designs



● Give clinicians extra info using data which is 
already collected
○ Non-invasive
○ How will introduction of stent affect flow 

and stresses in the system?
○ Wall shear stress, oscillatory shear stress, 

etc.

Why simulation?



Flow, stresses, velocity comparisons, etc.

6



Magnetic Drug Targeting

7

• Super Paramagnetic Iron Oxide particles
• SPIONs can be coated with polymers to produce 

various colloidal interactions, or loaded with drugs
• Magnetic field can guide SPIONs to target site e.g. 

tumour
• Rapidly varying magnetic field causes induction 

heating, applying heat to the tumour or causing 
release of drugs

• We study the distribution and interactions of these 
colloids using CFD



Magnetic Drug Targeting

Patronis et al., Front. Physiol. 9:331 (2018)



Step 1: Compile HemeLB



Get and build HemeLB
● Get it from the shared folder on Marenostrum:

cp -r /gpfs/projects/nct00/nct00004/hemelb-pure_public/  ~/

● Unload/load necessary modules:
module unload intel/2017.4
module unload impi/2017.4
module unload mkl/2017.4
module load gcc/7.1.0
module load openmpi/1.10.7

● Compilation:
mkdir ~/hemelb-pure_public/src/build/
cd ~/hemelb-pure_public/src/build/
cmake ..
make

● Should take a couple of minutes to compile

( The above instructions are available in hemelb-pure_public/README.md )



Step 2: Create input files



● Rotational Angiography or x-ray CT is used to take 
x-ray images at various angles around the patient's 
head
○ Can reconstruct the 3D volume revealed by the 

contrast agent.
○ Typically, image quality is better from the CT scan 

due to the faster acquisition time.
● Segmentation and post-processing (filtering and 

smoothing) can be carried out with software such as 
VMTKLab (http://vmtklab.orobix.com).

Segmentation of Medical Images



Predicting Velocity Data

● We need to specify the time-velocity 
profile at the inlets to the area of 
interest.

● Non-invasive measurement 
techniques include Transcranial 
Doppler (TCD)

● Due to the skull, technique can only 
be used at very limited number of 
locations around head.

● Alternatively, couple 3D CFD solver 
to a 1-dimensional solver

● PyNS (A 1D Navier-Stokes solver 
running with Python).

● Can aid in predicting velocity profiles 
for areas of the brain which are not 
accessible to TCD.



Input files for simple case
● Go to the sample input file directory:

cd ~/hemelb-pure_public/cases/bifurcation/

● Let’s look through the input files
● We’ll use a simple bifurcation geometry to start with

bifurcation.stl



Velocity input files

● A peak velocity time-profile for use at the (one) inlet

.

.

.
velocity_bifurcation.txt



Velocity input files

● What is velocity_bifurcation.txt.weights.txt?
○ Sets the velocity distribution across the inlet
○ e.g. parabolic profile

.

.

.
velocity_bifurcation.txt.weights.txt

inlet



input.xml
● A single file that tells HemeLB where to find any data it needs
● Normally a graphical user interface, or automated pipeline would generate 

most of this
● First we have parameters related to the lattice-Boltzmann algorithm:



input.xml
● Information about the location and type of inlets/outlets to the geometry



input.xml
● The position of the paramagnetic particles

● Magnet location, strength, wall lubrication interaction, etc.

● And so on...



Step 3: Run HemeLB



Running HemeLB
#!/bin/bash
#SBATCH --ntasks=8
#SBATCH -o %J.out
#SBATCH -e %J.err
#SBATCH -t 010:00
#SBATCH --reservation=VPHSUMMER18

rm -rf results
srun ~/hemelb-pure_public/src/build/hemelb -i input.xml

Submit the above SLURM job script using:
sbatch run_bifurc_reservation.sh

Check progress with:
watch squeue



Check reports.txt
● A new directory should have appeared, called results/
● If you’re waiting, have a look at report.txt



Step 4: Analyse results



Extract data from results/

● We want to visualise what has been output to the results/ directory

● The following command will extract the information needed for 
visualization:

./hemeXtract -X results/ColloidOutput.xdr -o colloids.csv

● Copy this file to your laptop (or wherever you have paraview installed)
● Copy bifurcation.stl to your laptop too

● Once you have both files, on your laptop open paraview

paraview



Open bifurcation.stl

Use slider to reduce opacity

Click apply



Open colloids.csv

Replace field delimiter with a space

Uncheck ‘Have Headers’



Filters->Alphabetical->Table to Points

Set Coloring to Field 0 (time step)

Set X Column to Field 3
Set Y Column to Field 4
Set Z Column to Field 5



If there’s still time at the end...

Look in ~/hemelb-pure_public/cases/CoW100
Follow instructions in the README file there



What algorithm is HemeLB running?



Lattice Boltzmann Method

● A discrete way of solving Boltzmann equation
○ Can be shown to satisfy incompressible 

Navier-Stokes equation
○ Advantages for multiphase, and 

non-Newtonian flows.
● Why use LB?

○ Divide up simulation domain into a regular 
grid of lattice sites
■ Fluid sites
■ Wall sites

○ 2 steps: Streaming and Collision
○ Only nearest-neighbour interactions 

(typically)
■ Extremely scalable
■ Works well with sparse geometries



A note on compilation flags



MDT Algorithm

Patronis et al., Front. Physiol. 9:331 (2018)



Example Code Fragment



What’s the point?



Circle of Willis

Patronis et al., Front. Physiol. 9:331 (2018)



Tracer particle flow in CoW

https://docs.google.com/file/d/1kF2Gx-oUfSuj1nCe86u0Y3E-Hqd7XyID/preview


Velocity input files

Patronis et al., Front. Physiol. 9:331 (2018)

● Inputs generated from 1D 
model



Video of particles in CoW

https://docs.google.com/file/d/1gN8Y1A6e-gY8LVhB-NfnmpWaiPEghOW_/preview


Particles at target site

Patronis et al., Front. Physiol. 9:331 (2018)



Particles at target site

● Superparamagnetic Iron Oxide Nanoparticles 
with drug coating

● Aim: Predict required dose given patient 
specific geometry and physiological state, 
magnet configuration etc.

Patronis et al., Front. Physiol. 9:331 (2018)

● 80 mmHg, 4.8 l min−1, 68 bpm
● 112 mmHg, 10.7 l min−1, 113 bpm
● 116 mmHg, 11.9 l min−1, 120 bpm
● 122 mmHg, 13.2 l min−1, 134 bpm



Load Balancing

Patronis et al., Front. Physiol. 9:331 (2018)



Massive supercomputers



What about the Exascale?

● US Department of Energy, expects 
Aurora exascale machine by 2021
○ But won’t give details

● Mixtures of GPU and CPU nodes
● “real challenge here is to keep the 

power draw to something in the 
neighborhood of 400 to 600 watts per 
node”

https://www.top500.org

● “Soon”



Scaling up

Blue Waters, ~5 billion fluid sites

● Speedup = t_1/t_N
● t_1 = time on one core
● t_N = time on N cores

● Ideal would be N times 
speedup on N cores



Load balance and topology issues

Scaling relative to 1 SuperMUC island (8192 cores) for a 
20um circle of Willis geometry (around 360 million fluid 
sites)

ARCHER

SuperMUC

● SuperMUC island topology 
is more challenging
– Requires tuning of load 

decomposition 
● Challenge due to high sparsity 

of vascular systems (CoW has 
<< 1% volume fluid sites)



Full Human Arterial Tree

46

~7 cm

170 
cm

~mm

● Typically use CT-scan data 
(Angiogram) 

○ Segmentation of files ~9.8 GB
○ Full human arterial tree obtained 

through MRI scan
● Voxelization and geometry building 

takes ~10+ hours on 100s-1000s  of 
cores for the largest cases

○ Requiring ~300G memory for 
voxelization

○ Outputting ~5 Terabytes fluid site 
data (uncompressed)

○ Final geometry file is ~10GB
● Lattice-Boltzmann  simulation 

(HemeLB)
○ Large cases require 30k cores+ for 

20 hours+



Acknowledgements

Alex Patronis
Derek Groen
Sebastian Schmieschek
Glen Anderson
Ulf Schiller
Rupert Nash
James Hetherington
Miguel Bernabeu

Hoskote Chandrashekar
Fergus Robertson

Peter Coveney

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 671564.

UKCOMES



Still time…?

Look in ~/hemelb-pure_public/cases/CoW100
Follow instructions in the README file there


